Динамические прогибы при падении груза. II

Расчет на прочность при ударе в обычной работе инженера-конструктора встречается не очень часто. Поэтому возникновение такой задачи может поставить в тупик своей неожиданностью. Расчеты при ударных, то есть динамических нагрузках очень сложны и часто производятся...

По эмпирическим – полученным из практических опытов — методикам и формулам. В этой статье мы рассмотрим расчет по приближенной теоретической формуле, которая, однако, позволяет быстро, просто, понятно и с достаточной для многих случаев жизни точностью учесть динамическую составляющую нагрузки!

Выполним расчет на прочность и определим прогиб балки при воздействии ударной нагрузки на примере консоли.

Общий подход к статическим расчетам на прочность при изгибе подробно изложен в статье « », где приведены уравнения общего вида, позволяющие произвести расчет на прочность балки с любыми опорами и при любых нагрузках.

Расчеты выполним в программе MS Excel. Вместо MS Excel можно воспользоваться программой OOo Calc из свободно распространяемого пакета Open Office.

С правилами форматирования ячеек листа Excel, которые применены в статьях этого блога, можно ознакомиться на странице « ».

Расчет консольной балки при ударе.

Расчет на прочность, который мы будем выполнять, является приблизительным.

Во-первых, предполагаем, что вся потенциальная энергия груза, падающего с некоторой высоты, переходит в кинетическую энергию, которая при соприкосновении груза с балкой полностью переходит в потенциальную энергию деформации. В реальности часть энергии превращается в тепло.

Во-вторых, мы не будем учитывать в расчете массу балки. То есть прогиб балки под действием собственного веса примем равным нулю! (Чем меньше вес балки относительно веса груза, тем точнее результаты, полученные по рассматриваемой методике расчета!)

В-третьих, прогиб балки при ударе будем определять как прогиб от статического воздействия груза с весом больше реального веса груза на величину, определяемую коэффициентом динамичности. То есть силу при ударе найдем как сумму веса и силы инерции груза при торможении.

В-четвертых, считаем, что груз не отскакивает при ударе, а перемещается на величину динамического прогиба вместе с балкой. То есть удар абсолютно неупругий!

В-пятых, учтем ограничение, что ошибка расчета не превысит 8…12% только в случае, если рассчитанный коэффициент динамичности будет не более 12!

На рисунке, расположенном ниже, изображена расчетная схема.

Составим в Excel программу и в качестве примера выполним расчет на прочность и определим прогиб балки круглого сечения.

Исходные данные:

1. Вес груза G в Н записываем

в ячейку D3: 50

2. Высоту падения груза h в мм заносим

в ячейку D4: 400

3. Длину консольной балки L в мм вписываем

в ячейку D5: 2500

4. Осевой момент инерции поперечного сечения балки I x в мм 4 вычисляем для диаметра d =36 мм

в ячейке D6: =ПИ()*36^4/64 =82448

I x = π * d 4 /64

5. Осевой момент сопротивления поперечного сечения балки W x в мм 3 вычисляем для диаметра d =36 мм

в ячейке D7: =ПИ()*36^3/32 =4580

W x = π * d 3 /32

6. Допустимые напряжения материала балки (Ст3 сп5) при изгибе [ σ и ] в Н/мм 2 записываем

в ячейку D8: 235

7. Модуль упругости материала балки E в Н/мм 2 вписываем

в ячейку D9: 215000

Результаты расчетов:

8. Максимальный изгибающий момент при статическом воздействии груза Mст x в Н*мм определяем

в ячейке D11: =D3*D5 =125000

Mст x = G * L

9. Максимальное напряжение при статическом воздействии груза σ ст в Н/мм 2 вычисляем

в ячейке D12: =D11/D7 =27

σ ст = Mст x / W x

10. Прогиб края консоли от статического воздействия груза Vст y в Н/мм 2 рассчитываем

в ячейке D13: =D3*D5^3/3/D9/D6 =14,7

Vст y = G * L 3 /(3* E * I x )

11. Коэффициент динамичности K д вычисляем

в ячейке D14: =1+(1+2*D4/D13)^0,5 =8,45

K д = 1+(1+2* h /Vст y ) 0,5

12. Максимальное напряжение при динамическом воздействии груза σ д в Н/мм 2 вычисляем

в ячейке D15: =D12*D14 =231

σ д = σ ст * K д

13. Прогиб балки в точке удара при динамическом воздействии груза Vд y в мм определяем

в ячейке D16: =D13*D14 =124,1

Vд y = Vст y * K д

14. Коэффициент запаса прочности k вычисляем

в ячейке D17: =D8/D15 =1,02

k = [ σ и ] /σ д

Заключение.

Созданный расчет в Excel можно использовать для расчета на прочность при ударе консольных балок любого сечения. Для этого в исходных данных необходимо предварительно рассчитать осевые моменты инерции и сопротивления соответствующего сечения.

Для балок с другими вариантами опор следует найти прогиб и напряжение от статического воздействия груза по соответствующим схеме опор формулам, затем по приведенной в п.11 формуле рассчитать коэффициент динамичности и определить прогиб балки в точке удара и максимальное напряжение в опасном сечении при ударе.

Опасное сечение – это сечение, в котором напряжение максимально и, соответственно, в котором начнется изгиб при достижении напряжением предельного значения. Определяется это сечение индивидуально для конкретных схем из эпюр и расчетов.

Коэффициент динамичности зависит – как следует из формулы – от высоты падения груза и величины прогиба при статическом приложении нагрузки. Чем больше высота падения, тем больше коэффициент динамичности. Это понятно, но почему этот коэффициент возрастает при уменьшении статического прогиба? Дело в том, что, чем меньше статический прогиб, тем жестче балка и тем быстрее остановится падающий груз после касания. Чем меньше время и путь торможения груза, тем больше ускорение (точнее торможение – ускорение с отрицательным знаком), а значит больше и сила инерции, которая по второму закону Ньютона, как известно, равна произведению массы тела на ускорение! Спрыгнуть на батут с высоты четырех метров можно легко, а вот на бетонный пол – чревато последствиями…

Подписывайтесь на анонсы статей в окне, расположенном в конце каждой статьи или в окне вверху страницы.

Не забывайте подтверждать подписку кликом по ссылке в письме, которое тут же придет к вам на указанную почту (может прийти в папку « Спам» )!!!

Оставляйте ваши комментарии, уважаемые читатели! Ваш опыт и мнение будут интересны и полезны коллегам!!!

Прошу уважающих труд автора скачивать файл после подписки на анонсы статей!

Под ударом понимается взаимодействие движущихся навстречу друг другу тел в результате их соприкосновения, связанное с резким изменением скоростей точек этих тел за весьма малый промежуток времени.

Ударная нагрузка является динамической. Время удара измеряется в тысячных, а иногда и миллионных долях секунды, а сила удара достигает большой величины, например, действие кузнечного молота на кусок металла, удар падающего груза при забивке свай и др.

За очень малый промежуток времени скорость ударяющегося тела становится равной нулю. В этот момент напряжения и деформации в системе достигают наибольших значений. Целью расчета на удар и является определение наибольших деформаций и напряжений.

Система, подвергающаяся удару, может испытывать различные деформации, такие как сжатие, растяжение, изгиб, кручение, изгиб с кручением и др. Поэтому различают продольный, поперечный и скручивающий удары (рис. 13.5).

Рис. 13.5. Схемы ударных нагрузок

На рис. 13.5, а и 13.5, б показаны продольные удары – сжимающий и растягивающий, на рис 13.5, в показан поперечный изгибающий удар.

Скручивающий удар имеет место при падении груза G с высоты h или при резком снижении угловой скорости вала с маховиком, например, при внезапной его остановке (рис. 13.5, г, д).

Точное решение задачи о напряжениях и деформациях при ударе затруднительно, потому что неизвестен закон изменения скорости при соударении тел и, следовательно, действующих при ударе нагрузок, неизвестны силы сопротивления при ударе, чрезвычайно сложен закон распространения скорости деформации в системе, воспринимающей удар.

В практике применяют упрощенные методы расчета, основанные на следующих основных допущениях:

1) деформации стержня от ударяющего груза распространяются по всей длине стержня, они подчиняются закону Гука и подобны деформациям, возникающим от статического приложения того же груза. Поэтому связь между динамическими силами и перемещениями остается такой же, как и при статической нагрузке;

2) опорные устройства, как правило, полагают абсолютно жесткими;

3) ударяющее тело является абсолютно жестким и при ударе не отскакивает от системы.

Изучение напряжений и деформаций при ударе основано на использовании закона сохранения энергии. При этом предполагается, что кинетическая энергия падающего груза А численно равна потенциальной энергии деформации упругой системы U :

Рассмотрим сначала расчет на удар в случаях, когда масса упругого тела, подвергающегося удару, мала и ею можно пренебречь. Продольный ударгруза G падает с высоты h и ударяется о стержень, вызывая его сжатие на величину , которая больше деформации стержня ∆ ст при статическом действии груза G (рис. 13.6).



Кинетическая энергия падающего груза равна:

Потенциальная энергия численно равна площади треугольника диаграммы F дин ∆ дин (рис. 13.7).

Рис.13.6. Схема удара сжатием

Рис. 13.7. Схема для определения потенциальной

энергии деформации при ударе

С учетом зависимости А = U имеем:

Выразим нагрузки через деформации:

Получим квадратное уравнение для определения

В формуле перед корнем следует взять знак «плюс», так как , тогда получим:

Динамический коэффициент будет равен:

Зная коэффициент, можно определить и напряжения:

Динамический коэффициент зависит от величины:

Следовательно, напряжения при ударе зависят не только от площади поперечного сечения стержня A (как при статическом приложении нагрузки), но и от длины стержня и жесткости материала Е . Чем больше длина l , тем напряжения при ударе будут меньшими. С увеличением модуля упругости напряжения увеличиваются.

С целью уменьшения динамических напряжений в технике используются различные амортизаторы, увеличивающие податливость стержня (резиновые прокладки, пружины) (рис. 13.8).

Рис. 13.8. Схема удара сжатием

с амортизатором – пружиной

В этом случае

Рассмотрим частные случаи.

1. При мгновенном приложении нагрузки, когда H = 0:

При этом напряжение и перемещение в два раза больше, чем при статическом приложении нагрузки.

2. Если высота падения груза Н велика, т. е.

то единицей в подкоренном выражении для определения динамического коэффициента можно пренебречь, тогда:



3. При очень больших величинах

можно пренебречьединицей и перед корнем. Тогда

Если известна скорость падения груза, а не высота падения, то динамический коэффициент может быть выражен через скорость. При свободном падении

·

Определение динамического коэффициента при продольном ударе стержней с переменным поперечным сечением.

Сравним прочность двух стержней, подвергающихся продольному удару. Один стержень имеет постоянную площадь сечения А , а другой на участке длиной l имеет площадь сечения A , а в пределах остальной длины стержня – , где п > 1 (рис. 13.9).

При статическом воздействии груза F оба бруса равнопрочны, так как наибольшие напряжения (при расчете без учета концентрации напряжений) в каждом из них

Рис. 13.9. Схема продольного удара

При ударном действии нагрузки динамический коэффициент для первого бруса равен:

Для второго бруса

Если длина l 1 очень мала, что имеет место, например, при наличии поперечных выточек, то приближенно можно принять:

Динамический коэффициент для второго стержня:

т. е. в раз больше, чем для первого стержня. Таким образом, второй брус при ударном действии нагрузки менее прочен, чем первый. Поэтому оказывается более выгодным уменьшать площадь сечения по всей длине стержня.

В качестве примера можно привести болт, передающий от одной части конструкции на другую растягивающий удар. Участок болта с нарезкой, имеющий меньший диаметр, будет работать как выточка. Обрыв болта весьма вероятен. Для улучшения конструкции необходимо сделать его площадь всюду (или почти всюду) равной площади по внутреннему диаметру нарезки. Этого можно достигать путем обтачиванием болта или высверливанием в нем канала (рис. 13.10).

Рис. 13.10. Болт, работающий на растягивающий удар

Поперечный изгибающий удар.

Рассмотрим балку, свободно лежащую на двух шарнирных опорах. Балка изгибается под действием груза F , падающего с высоты H (рис. 13.11).


Рис. 13.11. Схема поперечного изгибающего удара

Динамический коэффициент в этом случае определяется по формуле

где f ст – прогиб балки в месте падения груза при статическом ее нагружении.

Если а = b = l /2, то

Так же, как и при продольном ударе, внезапное приложение нагрузки на балку вызывает напряжение

Условие прочности при изгибающем ударе имеет такой же вид,
как и при продольном, т. е.

Учет массы тела, испытывающего удар.

Если груз падает на стержень, обладающий значительной массой, то решение значительно усложняется. Можно применить приближенное решение, оно сводится к замене реальной массы стержня приведенной массой, сосредоточенной в месте удара. Учет массы тела может оказать существенное влияние на динамические напряжения.

Если груз G падает на стержень, вес которого Q значителен, то динамический коэффициент определяется по формуле

где Н – высота падения;

β – коэффициент приведения массы стержня. Он зависит от способов закрепления концов стержня и вида удара (продольный, поперечный и т. д.). Для определения коэффициента β рассматривают кинетическую энергию стержня при его движении вследствие удара;

Q – вес ударяемого стержня;

G – вес падающего груза.

Рассмотрим частные случаи.

1. Продольный удар. Стержень постоянного сечения A защемлен одним концом. Объемный вес материала γ. Будем считать, что в момент удара верхний конец ударяемого стержня получает скорость V . Скорость нижележащих сечений стержня изменяется по линейному закону, достигая нулевого значения в нижнем сечении стержня (рис. 13.12).

Скорость движения произвольного сечения, расположенного на расстоянии х от нижнего сечения, будет равна:

Рис. 13.12. Схема продольного удара

Так как частицы стержня движутся, то стержень обладает кинетической энергией. Кинетическая энергия элементарной частицы стержня длиной dx будет равна:

Кинетическая энергия всего стержня с учетом данной формулы равна:

где т прив – приведенная масса стержня.

2. Поперечный удар. В этом случае балка постоянного поперечного сечения защемлена одним концом и испытывает удар груза на свободном конце (рис. 13.13)

Рис. 13.13. Схема консольной балки при ударе

Для балки, закрепленной шарнирно, удар приходится посередине пролета (рис. 13.14).

Рис. 13.14. Схема поперечного удара для однопролетной балки

Учет массы ударяемого стержня может значительно уменьшить динамический коэффициент.

Рассмотрим какую-либо неподвижно закрепленную упругую систему, на которую с высоты h падает груз Я (рис. 6.14). Пройдя путь , груз Р, движущийся с некоторой скоростью, приходит в соприкосновение с неподвижной системой. Это явление называется ударом. При изучении удара предполагаем, что удар является неупругим, т. е. ударяющее тело не отскакивает от конструкции, а перемещается вместе с ней.

После удара в некоторый момент времени скорость перемещения груза станрвится равной нулю. В этот момент деформация конструкции и напряжения, возникающие в ней, достигают своих наибольших значений. Затем происходят постепенно затухающие колебания системы и груза; в результате устанавливается состояние статического равновесия, при котором деформации конструкции и напряжения в ней равны деформациям и напряжениям, возникающим от статически действующей силы Р.

Система, подвергающаяся удару, может испытывать различные виды деформаций: сжатие (рис. 6.14, а), изгиб (рис. 6.14, б,в), кручение с изгибом (рис. 6.14, г) и др.

Целью расчета сооружения на удар является определение наибольших деформаций и напряжений, возникающих в результате удара.

В курсе сопротивления материалов предполагается, что напряжения, возникающие в системе при ударе, не превышают пределов упругости и пропорциональности материала, а потому при изучении удара можно использовать закон Гука.

В основе приближенной теории удара, рассматриваемой в курсе сопротивления материалов, лежит гипотеза о том, что эпюра перемещений системы от груза Р при ударе (в любой момент времени) подобна эпюре перемещений, возникающих от этого же груза, но действующего статически.

Если, например, эпюра наибольших прогибов балки от удара по ней падающим с высоты h грузом Р (динамических прогибов) имеет вид, показанный на рис. 7.14, а, а эпюра прогибов от статически приложенной силы Р (статических прогибов - вид, изображенный на рис. 7.14, б, то на основании указанной гипотезы

где - динамические прогибы (от удара грузом Р) в сечениях балки соответственно с абсциссой и под грузом; - статические прогибы (от силы Р, действующей статически) в тех же сечениях; - динамический коэффициент.

Из приведенной гипотезы следует, что скорости движения различных точек системы, воспринимающей удар, в каждый момент времени относятся друг к другу как перемещения этих точек от статически действующего груза Р. В тот момент времени, когда скорость движения точки системы в месте удара равна нулю, скорости движения всех остальных ее точек также равны нулю.

Рассмотрим сначала расчет на удар в случаях, когда масса упругого тела, подвергающегося удару, мала и ее при расчете можно принять равной нулю. Для этих случаев приведенная выше гипотеза становится точной, а не приближенной, и потому позволяет получить точное решение задачи.

Обозначим А наибольшее перемещение системы по направлению груза Р (см. рис. 6.14).

Тогда работа груза в результате падения его с высоты h равна . В момент времени, когда деформация системы достигает наибольшей величины, скорости движения груза и системы, а следовательно, и кинетическая энергия их равны нулю. Работа груза к этому моменту равна, таким образом, потенциальной энергии U деформации упругой системы, т. е.

Из сформулированной выше гипотезы следует, что перемещения точек упругой системы, возникающие в результате удара (динами-ческие перемещения), можно получить путем умножения перемещений, возникающих от статического действия силы Р, на динамический коэффициент [см. формулу (7.14)].

Таким образом, перемещение от динамического (ударного) действия нагрузки можно рассматривать как статическое перемещение от силы действующей по направлению силы Р. Тогда потенциальная энергия деформации системы [см. формулы (4.11) и (10.11)]

Здесь - наибольшая сила, с которой груз давит на упругую систему (когда она имеет наибольшую деформацию). Эта сила равна сумме веса груза и силы инерции груза, возникающей в результате торможения его упругой системой.

Подставим выражение V [по формуле (9.14)] в равенство (8.14):

Но на основании формулы и, следовательно,

Здесь - перемещение от статически действующей силы Р по ее направлению.

Из условия (10.14)

В формуле (11.14) перед корнем взят знак плюс потому, что прогиб А не может быть отрицательным.

Скорость v падающего груза в момент соприкосновения с системой, подвергающейся удару, связана с высотой падения h соотношением

Поэтому формулу (11.14) можно представить и в таком виде:

На основании формул (7.14), (11.14) и (12.14) получаем следующее выражение динамического коэффициента:

Из принятой гипотезы следует, что динамические напряжения а относятся к величинам статических напряжений как соответствующие перемещения:

Таким образом, для определения наибольших напряжений и перемещений при ударе напряжения и перемещения, найденные в результате расчета системы на силу Р, действующую статически, следует умножить на динамический коэффициент или рассчитать систему на действие некоторой статической силы, но равной произведению

Рассмотрим теперь случай, когда высота падения груза равна нулю. Такой случай носит название внезапного действия (или мгновенного приложения) нагрузки. Он возможен, например, при раскружаливании железобетонного перекрытия, если стойки, поддерживающие опалубку, убрать мгновенно, выбив их одновременно все. При из формулы (13.14)

Следовательно, при внезапном действии нагрузки деформации системы и напряжения в ней вдвое больше, чем при статическом действии той же. нагрузки. Поэтому в случаях, когда это возможно, следует избегать внезапного приложения нагрузки, например раскружаливание перекрытия производить постепенно, при помощи домкратов, песочниц и т. п.

Если высота h падения груза во много раз больше перемещения то в выражении (13.14) можно пренебречь единицами и принять

Из формул (13.14) и (16.14) видно, что чем большие тем меньше Динамический коэффициент. При статической действии нагрузки напряжения в системе не зависят от модуля упругости материала, а при ударном действии зависят, так как величина обратно пропорциональна модулю, упругости.

Рассмотрим несколько примеров ударного, действия силы Р.

1. В случае продольного удара, вызывающего деформацию сжатия бруса постоянного сечения (см. рис. 6.14, а), АСТ и, следовательно, на основании формулы (13.14) динамический коэффициент

Наибольшие напряжения при таком ударе

Если высота падения h или скорость v велики, то

Из формулы (19.14) следует, что напряжения от удара обратно пропорциональны квадратному корню из объема бруса.

Для уменьшения динамических напряжений следует увеличивать податливость (уменьшать жесткость) системы, например, путем применения пружин, смягчающих удар. Предположим, что на брус, подвергающийся продольному удару, поставлена пружина (рис. 8.14). Тогда [см. формулу (30.6)]

где - диаметр проволоки (прутка) пружины; -средний диаметр пружины; - число витков пружины.

В этом случае динамический коэффициент

Сопоставление формулы (20.14) с выражением (17.14) показывает, что применение пружины приводит к уменьшению динамического коэффициента. При мягкой пружине (например, при большом значении или малом d) динамический коэффициент имеет величину меньшую, чем при жесткой.

2. Сравним прочность двух брусьев, подвергающихся продольному удару (рис. 9.14): одного - постоянного сечения с площадью F, а другого с площадью F на участке длиной и площадью в пределах остальной длины бруса

Для первого бруса

а для второго

Если длина очень мала, например при наличии поперечных выточек, то приближенно можно принять

При статическом действии силы оба бруса равнопрочны, так как наибольшие напряжения (при расчете без учета концентрации напряжений) в каждом из них При ударном же действии нагрузки динамический коэффициент по приближенной формуле (16.14) для первого бруса

а для второго (при малой величине )

т. е. в раз больше, чем для первого бруса. Таким образом, второй брус при ударном действии силы менее прочен, чем первый.

3. В случае изгибающего удара грузом Р, падающим с высоты h на середину балки, свободно лежащей на двух опорах (рис. ),

В этом случае динамический коэффициент [см. формулу (13.14)]

Наибольший изгибающий момент возникает в сечении посередине пролета балки:

Поперечная сила в сечениях балки

Переходя к расчету на удар с учетом массы упругой системы, подвергающейся удару, рассмотрим сначала случай, когда система обладает сосредоточенной массой (где - вес системы), расположенной в месте падения груза Р (рис. 10.14).

При этом будем различать три характерных момента.

1. Момент, непосредственно предшествующий соприкосновению груза Р с упругой системой, когда скорость груза Р равна v, а скорость массы равна нулю.

2. Момент соприкосновения груза Р с системой; при этом скорость с груза Р равна скорости движения упругой системы в месте удара.

3. Момент, когда упругая система получает наибольшее перемещение, а скорости груза Р и упругой системы равны нулю.

Скорость с определяется из условия, что при неупругом ударе количество движения до удара равно количеству движения после удара (см. курс теоретической механики), т. е.

(21.14)

Система под действием собственного веса Q еще до удара деформируется. Если - прогиб системы под силой Q, вызванный этой силой, то количество потенциальной энергии, накопленное системой до удара,

Обозначим А - наибольшее перемещение в месте падения груза Р, вызванное его ударным действием и силой

В момент времени, когда система получает такое перемещение, грузы Р и Q оказывают на систему наибольшее давление, равное где -динамический коэффициент, учитывающий вес груза Р, инерцию этого груза и инерцию груза Q. Рассматриваемому моменту времени соответствует наибольшее значение потенциальной энергии системы (кинетическая энергия в этот момент равна нулю, так как равны нулю скорости движения грузов Р и ):

где - потенциальная энергия системы до удара: кинетическая энергия груза и системы в момент их соприкосновения; - работа сил Р и Q на дополнительном перемещении (см. рис. 10.14) системы после удара.

Потенциальную энергию можно выразить также через силу и полное перемещение А [см. формулы (4.11) и (10.11]:

(23.14)

Приравняем друг другу выражения (22.14) и (23.14) и выразим в первом из них значение с через v [см. формулу (21.14)]. Тогда после некоторых преобразований

Обозначим прогиб системы под грузом Р от статического действия этого груза. Зависимость между перемещениями (от силы Q) и (от силы ) определяется формулами

Подставим эти выражения перемещений в уравнение (24.14) и преобразуем его:

Частицы системы, соприкасающиеся с грузом Р, после удара получают ту же скорость, что и груз остальные частицы после удара движутся с различными скоростями зависящими от положения частиц.

Для определения вызванных ударом наибольших динамических напряжений и перемещений с учетом массы упругой системы, так же как и при расчете без учета массы, напряжения и перемещения, найденные путем расчета системы на статическое действие силы Р, следует умножить на динамический коэффициент Прибавив к найденным значениям напряжения и деформации от собственного веса упругой системы (если по условию задачи их следует учитывать), получим полные напряжения и перемещения, возникающие при ударе.

Динамический удар

В настоящей статье нет возможности касаться теории упру-гости и теории динамического удара для альпинистской веревки. Ограничимся приведением результатов подсчетов, отвечающих на вопрос, - какой силы динамический удар возник бы при жестком закреплении веревки, если предположить, что она не порвется.

Расчет был сделан для случаев, когда высота падения равна длине веревки и когда она вдвое больше длины веревки
. Оказалось, что в первом случае возникает удар в 1300 кг, во втором около 1750 кг.

Таким образом ясно, что жестко закрепленная веревка не может являться удовлетворительным поглотителем энергии падающего тела, поскольку ни веревка, ни человек не могут выдержать возни-кающего динамического удара.

Приемы страховки как амортизаторы энергии падения.

Основное уравнение страховки

Основным амортизатором (поглотителем) во всех приемах стра-ховки является работа трения. Какой бы способ страховки мы ни взяли, - всюду мы столкнемся с трением веревки о выступ, корпус человека или крюк.

"При страховке трение равно произведению величины силы тре-ния в точке страховки на длину протравленной веревки.

Падающее тело остановится, если работа трения полностью ком-пенсирует работу (энергию) падения. Отсюда нетрудно написать уравнение сохранения энергии для падения тела по отвесу 1 .

где Р - вес упавшего тела в килограммах, H - высота падения в мет-рах, h-длина протравленной веревки в метрах и R - сила трения в месте страховки в килограммах.

Отсюда легко найти, чему равна длина протравливания:

Эта формула является основной формулой поглощения энергии при падении тела. Она положена в основу всех расчетов по технике страховки и в дальнейшем изложении употребляется в таком или не-сколько измененном виде при рассмотрении всех способов страховки.

Динамические нагрузки, допустимые

для страхующего и страхуемого

В большинстве случаев, имеющих место при страховке, динамический удар, получаемый страхуемым и страхующим, бывает разли-чен, причем первый испытывает больший удар. Объясняется это тем, что различные скальные выступы, на которых перегибается веревка, например, край площадки, крючья, ледоруб, смягчают удар, идущий от упавшего к страхующему.

Чем большее сопротивление удару окажет страхующий (т.е. чем крепче зажмет веревку, напряженнее будет держать корпус), тем сильнее будет сила удара и соответственно меньше веревки при-дется протравить для задержания упавшего.

Однако проведенные испытания и соответствующие расчеты по-казали, что для каждого метода страховки существуют свои пре-делы допустимых нагрузок, выше которых страховка может оказать-ся не только не действенной мерой для задержки упавшего, но даже будет опасностью для страхующего.

Известно, что многие сильные альпинисты могут в стойке стра-ховки через плечо выдержать вес 3-4 человек, т. е. около 220-260 кг. Но из этого не следует, что такую же нагрузку можно выдер-жать при ударе. Устойчивость человека к статическим и динамиче-ским нагрузкам различна. Устойчивость к динамической нагрузке обусловливается не только физической силой человека, но и его нервной системой, скоростью рефлекса, тренировкой, навыком.

Опыты, произведенные с различными страхующими (в опытах приняло участие шесть человек) при условии отвесного падения гру-за весом в 80 кг показали, что при страховке через плечо для альпи-ниста средней тренированности можно допустить динамический удар-до 100-130 кг.

При больших нагрузках страхующий обычно теряет устойчи-вость. При страховке в сидячем положении через поясницу устойчи-вость корпуса несколько повышается и допустимая динамическая нагрузка достигает 150-160 кг.

При применении приемов страховки с крючьями, через выступ, ледоруб, динамический удар, воспринимаемый страхующим, как пра-вило, колеблется в пределах нескольких десятков килограммов.

Специальных опытов по отысканию предельных нагрузок, до-пустимых для страхуемого, бригадой ЦНИИФК не производилось. Было проведено несколько пробных падений человека на крутом ледяном склоне (62°) и на фирновом склоне крутизной в 35°. Во всех остальных опытах страхуемый был заменен на отвесных уча-стках деревянным грузом, а на склонах - чучелом, по размерам и весу, соответствовавшим человеческому телу. По динамометру, при-крепленному к падающему человеку, грузу или чучелу определялась величина динамического удара на страхуемого. Средние результаты произведенных опытов сведены в прилагаемой табл. 1.

Способ страховки

Характер падения

Сила удара в кг, приходящаяся на страхуемого

Стоя, через плечо (веревка огибает край площадки)

Падение по отвесу

Сидя, через поясницу (веревка огибает край площадки)

Через выступ и плечо (веревка охватывает выступ на 180 о)

Стоя, через плечо

Скольжение по ледяному склону в 62 о

Возникает вопрос: может ли человеческий организм выдержать такую динамическую нагрузку?

До некоторой степени ответ на этот вопрос может быть получен из довольно обширных сведений по парашютизму и авиации. Не имея возможности остановиться на них подробнее, укажем, что при раскрытии парашюта потеря скорости происходит в течение 0,3-0,6 секунд и прыгающий испытывает динамическую нагрузку приблизительно в 600 кг. Однако грудная обвязка альпиниста резко отличается от подвесной системы парашютиста как по площади со-прикосновений с телом, так и по равномерности распределения на-грузки на грудную клетку и ноги.

Опыты, проведенные с человеком, падающим на ледяном скло-не, показали, что даже нагрузка в 120-150 кг крайне болезненна из-за несовершенства грудной обвязки. Назрела необходимость найти такую систему грудной обвязки, при которой возможная на-грузка в 300-400 кг не представит опасности для падающего.

II . ВЕРЕВКА И ЕЕ СВОЙСТВА

В настоящем разделе излагаются основные результаты, полу-ченные бригадой при статических и динамических испытаниях веревок, а также некоторые сведения из работ других авторов. Не-достаток места не позволяет привести весь имеющийся у нас мате-риал по способам применения веревки для грудной обвязки и свя-зывания, обосновав соответствующие практические рекомендации.

Очень часто альпинисты превращают веревку в своеобразный фетиш, забывая о том, что только в руках сознательного и умелого страхующего она., становится надежным средством. Статистика несчастных случаев (главным образом за границей) насчитывает де-сятки смертей, происшедших в результате разрыва веревки.

Альпинистская веревка обычно имеет диаметр 10-14 мм и прочность от 1000 до 1200 кг. Более толстые веревки тяжелы и не-удобны в употреблении, тем более, что при намокании вес и диа-метр их увеличиваются. Наиболее подходящим материалом для аль-пинистских веревок считается длинноволокнистая пенька. Льняное волокно недостаточно прочно и неудобно в употреблении, так как пряди такой веревки легко раскручиваются.

Веревки бывают крученые и плетеные. Плетеные более гибкие, но уступают крученым в прочности, - крученая веревка 10-мм диаметра соответствует 12-мм плетеной. При намокании плетеная веревка впитывает значительно больше влаги.

Просушка плетеной веревки более затруднительна; в ее внут-ренние волокна не проникает воздух и в них быстрее начинаются гнилостные процессы.

Репшнур представляет собой крученую или плетеную веревку диаметром 6-8 мм. До сих пор считалось, что прочность репшнура составляет 250-300 кг. Однако опыты нашей бригады показали, что такая прочность в ряде случаев не гарантирует безопасности применения репшнура для самостраховки, поскольку при некоторых способах страховки петля может подвергнуться действию динамиче-ского усилия до 200 кг. Учитывая, что в узлах веревка теряет до 50% своей прочности, необходимо, чтобы репшнур обладал проч-ностью не ниже 500 кг.

Из известных нам материалов и изделий веревка из раститель-ных волокон является пока наилучшим средством страховки и по-этому должна подвергаться тщательному и всестороннему изучению и усовершенствованию.

Техника страховки должна исходить из свойств и возможно-стей веревки.

Изучая качество альпинистской веревки, мы главным образом интересуемся ее прочностью, гибкостью, упругими свойствами и работоспособностью, т. е. способностью за счет своего растяжения поглощать некоторое количество килограммометров работы падаю-щего тела.

Исследования бригады показали, что веревка не подчиняется полностью закону упругости, который действителен для большин-ства однородных тел. Если для упругих тел величина удлинение пропорциональна действующей растягивающей силе, то при растя-жении веревки мы наблюдаем сначала значительное приращение длины, а затем по мере увеличения растягивающей силы рост удли-нения уменьшается.

Объяснение такому явлению следует прежде всего искать в том, что веревка изготавливается из большого числа довольно коротких волокон. Волокна собираются в пряди, из которых и скручивается веревка.

Поэтому-то при растяжении внутри таких прядей вначале про-исходит как бы расправление волокон, сдвиг их относительно друг друга и, наконец, удлинение самих волокон.

Различают два вида удлинений: остаточное, которое остается после прекращения действия растягивающей силы, и упругое, кото-рое исчезает, как только перестает действовать растягивающая? сила. Обычно для различных упругих материалов остаточное удли-нение бывает небольшим. Как показали наши исследования и ра-боты других авторов, для веревки имеет место обратная картина: очень значительное остаточное удлинение при относительно неболь-шом упругом удлинении. Это является серьезным недостатком ве-ревки, резко снижающим ее работоспособность после первого же сильного растяжения.

Вопросу о прочности и работоспособности крученых и плетеных веревок были посвящены работы Сикста, Хубера и Генри. Они по-казали, что крученая и плетеная веревки, сделанные из одного и того же материала, при одинаковом весе одного погонного метра имеют различную прочность и растяжимость. Из экспериментальных данных следует, что крученая веревка обладает более высо-ким пределом прочности. Плетеная веревка имеет большее оста-точное удлинение при относительно небольших нагрузках, в резуль-тате чего при повторных растяжениях ее работоспособность резко снижается. При статических испытаниях авторы нашли, что для но-вой крученой веревки предел прочности - около 1000-1100 кг, максимальная ее работоспособность (вплоть до разрыва) выра-жается в 45-50 кг-м на 1 м ее длины.

При динамических испытаниях была определена и критическая высота падения, приводящая к разрыву веревки. Авторы нашли, что при длине веревки в 1 м разрыв наступает при падении более чем на 0,6 м.

Динамические испытания веревок, проведенные нашей брига-дой, были организованы на стенде высотой в 11 м, позволявшем испытывать веревки в условиях, более близких к страховке в горах. Опыты проводились при различных соотношениях длины веревки высоты падения, которые с предельной ясностью показали недо-пустимость жесткого закрепления веревки при падениях по отвесу. Во всех опытах веревка рвалась в верхнем узле, что полностью под-тверждало теорию распространения динамического удара. Разрыв наступал около узла в среднем при 50% прочности, установленной статическими испытаниями. Отсюда следует, что предельная рабо-тоспособность веревки, найденная при статическом растяжении (45-50 кг-м), в действительности при условиях страховки умень-шается вдвое и составляет всего 20-25 кг-м. Кроме того, указанная работоспособность относится к новым, еще не вытянутым образ-цам; у веревки же, бывшей в употреблении, работоспособность до-полнительно снижается по мере вытягивания. По этому вопросу интересные данные, сведенные в табл. 2, приводятся в статье Шварца 1 .

Таблица 2

Работоспособность веревки

№ веревки

Характеристика веревки

Вес 1 пог.м веревки в кг

Работоспособность 1 метра веревки в кг-м

Новая крученая, диам. 12 мм

Крученая, после 70 часов употребления на сухих скалах, диам. 12 мм

Крученая, после различных восхождений в течение 2,5 сезонов, диам. 12 мм

Плетеная. Продолжительность употребления не выяснена

Мы расширили наблюдения и провели серию испытаний с мок-рыми и подсушенными образцами. По прочности и работоспособ-ности мокрая веревка почти не уступает сухой. Мокрая и влажная веревка из сизальской пеньки теряет в прочности от 5 до 10%.

В таблицу 3 сведены основные результаты статических испыта-ний, проведенных бригадой.

Тщательно высушенная веревка полностью восстанавливает свою прочность.

Большую опасность представляют гнилостные процессы, кото-рые легко возникают в волокнах веревки. Известны случаи, когда внешне почти новая веревка при испытаниях рвалась при 50% я даже более низком проценте нормальной разрывной нагрузки.

Таблица 3

Испытание веревок на растяжение

Характеристика испытываемой веревки

Сухая веревка

Мокрая (после 1 суток мочки)

Влажная (после 1 суток мочки и 1 суток сушки)

Влажная (после 2 суток сушки)

Высушенная (до постоянного веса)

Р – разрывное усилие в кг,  - удлинение в % от начальной длины веревки

Крученая из сизаля диам. 14,5 мм

Крученая из льняной вареной пряжи диам. 13,2 мм

Крученый репшнур из пеньки диам. 9,1 мм

Очень существенным недостатком является плохая сопротивляе-мость волокон веревки всякого рода срезывающим усилиям.

Если при растяжении веревка из сизальской пеньки имеет пре-дел прочности приблизительно около 1100 кг, то при срезывающем направлении усилия разрыв происходит при нагрузках в 500-600 кг в зависимости от площади, на которую действует это усилие.

Срезывающее усилие возникает во всех узлах, в месте перегиба веревки в карабинах, на выступах. Этим объясняется то обстоятель-ство, что разрыв веревки, как правило, происходит около узла или в карабине.

Поэтому альпинисту следует помнить, что новая доброкаче-ственная веревка может выдержать, как максимум, удар в 500 кг. Эта величина очень скоро (после 5-10 дней употребления) сни-жается еще на 25-30%, а через 1-2 сезона пользования, может составлять уже меньше половины, около 200-250 кг.

Повисают на дедушкином портрете. И мы сами сегодня не те , что были вчера , то, что оживает в нас утром, иное... , чем то, что уснуло вечером. И меняются не ...

  • Не допускается тиражирование воспроизведение текста или его фрагментов с целью коммерческого использования

    Документ

    Все советское, чтобы то, что творится сегодня , не мы уже вовсе не те , кем были вчера

  • Не допускается тиражирование воспроизведение текста или его фрагментов с целью коммерческого использования (2)

    Документ

    Все советское, чтобы то, что творится сегодня , не выглядело без­радостным. Хотя известно: пиная... под подозрени­ем. И, значит, мы уже вовсе не те , кем были вчера , когда поль­зовались вниманием и уважением...

  • Не допускается тиражирование воспроизведение текста или его фрагментов с целью коммерческого использования (1)

    Монография

    Мужчины не те , что были раньше – они выбирают то, что более доступно» ... «Я просил тебя прийти вчера» (Sent for You Yesterday ... не был деспотом. Он никогда не говорил нам, как мы должны играть. Мы были ... turntables». Мир сегодня не такой, каким он был 20–30 ...

  • На рисунке 5.1 показаны нагрузки, действующие на балку. Равномерно распределённая нагрузка интенсивностью q представляет собой собственный вес балки, а нагрузка p i – инерционные силы. Сила S (уси-

    лие в тросе) равна по величине равнодействующей нагрузок q и p i направлена в противоположную сторону, т.е. уравновешивает эти нагрузки.

    Инерционные силы p i возникают после включения двигателя крана

    и вызывают изгиб балки (дополнительно к изгибу от действия собственного веса q . В результате изгиба различные сечения балки перемещаются

    при подъеме с различными ускорениями a . Поэтому в общем случае интенсивность p i инерционной нагрузки переменна по длине балки.

    В частных случаях, например когда жёсткость балки при изгибе весьма велика или когда сечение A , в котором балка прикреплена к тросу, поднимается на значительную высоту с постоянным ускорением, влиянием деформаций балки, вызванных инерционными силами p i на

    величины ускорений a , можно пренебречь. В этих случаях можно считать, что ускорения всех сечений балки одинаковы и равны ускорению сечения i равномерно распределена по длине балки.

    Аналогично и при решении ряда других динамических задач можно пренебрегать влиянием деформаций системы на распределение в ней ускорений, а следовательно, и на распределение инерционных сил.

    В качестве примера рассмотрим расчёт вертикального бруса постоянного сечения, поднимаемого вверх силой S , превышающей вес бруса G (рис. 5.1). Кроме силы S на брус действуют равномерно распределённая по его длине вертикальная нагрузка интенсивностью q = G l от соб-

    ственного веса бруса и инерционная нагрузка

    pi = (q g ) a .

    Ускорение a направлено в сторону действия силы S , т.е. вверх, величину его принимаем одинаковой для всех поперечных сечений бруса. Поэтому нагрузка p i равномерно распределена по длине бруса и направ-

    лена в сторону, противоположную ускорению, т.е. вниз.

    Составляем уравнение равновесия в виде суммы проекций всех сил на вертикальную ось x :

    ∑ X = S − G − p i i = 0 , откуда p i = (S − G ) / l .

    Нормальное напряжение в поперечном сечении бруса, отстоящем на расстояние x от его нижнего конца,

    σ = (q + p )

    S − G

    Наибольшее напряжение возникает в верхнем сечении бруса:

    σ max = S .

    5.3. РАСЧЁТ НА ПРОЧНОСТЬ ПРИ УДАРЕ

    Под ударной понимается всякая быстроизменяющаяся нагрузка. При ударе различные точки системы получают некоторые скорости, так что системе придаётся кинетическая энергия, которая переходит в потенциальную энергию деформации конструкции, а также в другие виды энергии – прежде всего в тепловую.

    При определении динамических допускаемых напряжений следует учитывать изменение механических характеристик материала. Однако ввиду недостаточной изученности этого вопроса расчёт на прочность при динамической нагрузке обычно ведут по статическим характеристикам, т.е. условие прочности имеет вид

    σ дmax ≤ [ σ ] .

    При ударе возникают местные деформации в зоне контакта и общие деформации системы. Условимся рассматривать только общие деформации системы, и предположим, что динамические напряжения не превосходят предела пропорциональности материала.

    Для приближённого определения напряжений и перемещений сечений в момент наибольшей деформации системы в практических расчётах применяется энергетический метод, который применим в тех случаях, когда скорость ударяющего тела мала по сравнению со скоростью распространения ударной волны, а время соударения значительно больше времени распространения этой волны по всей системе.

    Таким образом, простейшая теория удара основана на следующих допущениях:

    1. Удар считается неупругим , т.е. ударяющее тело продолжает двигаться вместе с ударяемой конструкцией, не отрываясь от неё. Иными словами ударяющее тело и ударяемая конструкция имеют общие скорости после удара.

    2. Ударяемая конструкция имеет лишь одну степень свободы , и вся масса конструкции сосредоточена в точке удара.

    3. Рассеянием энергии в момент удара пренебрегают, считая, что вся кинетическая энергия ударяющего тела переходит в потенциальную энергию деформации ударяемой конструкции, движение которой происходит при отсутствии сил сопротивления.

    4. Ударяемая конструкция считается идеально упругой .

    Это означает, что зависимость между динамическими усилиями и ими вызванными перемещениями, точно так же подчиняется закону Гука, как и при статическом действии нагрузок (рис. 5.2).

    Отношение динамических и статических перемещений называется коэффициентом динамичности или динамическим коэффициентом

    δд

    δ ст

    В соответствии с законом Гука

    σд

    R ст

    σ ст

    где σ д # динамические напряжения; σ ст # статические напряжения.

    R ст

    δ ст

    δд

    5.4. ВЕРТИКАЛЬНЫЙ УДАР

    Предположим, что груз массой m падает с некоторой высоты h на упругую систему, масса которой мала по сравнению с массой груза. Упругую систему будем считать невесомой (рис. 5.3, а , б ).

    Груз в процессе падения выполняет работу

    h + δд

    где δ д – динамический прогиб системы (перемещение точки удара) в мо-

    мент наибольшей деформации.

    На рисунке 5.4 показано, что работа соответствует площади прямоугольника abde , так как величина веса груза Q в процессе удара не меняется.

    Q = mg

    Q = mg

    δд

    δд

    h + δст

    h + δд

    Данная работа накапливается в системе в виде потенциальной энергии, которая равна работе внутренней силы R , вызывающей прогиб S при ударе. На рисунке 5.2 эта потенциальная энергия с учётом принятых выше допущений соответствует площади треугольника acd , так как сила R изменяется от нуля до конечного значения, равного R д , по линейному

    закону. Таким образом, потенциальная энергия равна

    R дδ д

    Приравняв выражения (5.4) и (5.5), с учётом уравнений (5.2) и (5.3)

    δ ст

    а при Q = R ст

    kд 2

    δ ст

    Решая квадратное уравнение относительно k д , получим

    δ ст

    Положительный знак перед радикалом взят потому, что искомыми являются наибольшие деформации. Если груз после удара остаётся на упругой системе, то при отрицательном знаке перед радикалом решение данного уравнения даёт наибольшее отклонение точки удара при возвратном движении.

    После нахождения k д , по уравнениям (5.2), (5.3) могут быть опреде-

    лены динамические напряжения и деформации системы, которые будут в k д раз больше тех, которые имели бы место в системе при статическом

    приложении груза Q .

    Заметим, что упругие свойства системы, как видно из формулы (5.7), смягчают удар и, наоборот, сила удара тем больше, чем больше жёсткость системы.

    Частный случай ударного нагружения – внезапное приложение груза, когда h = 0. В этом случае k д = 2 и a д = 2a ст , δ д = 2δ ст , т.е. при внезапном приложении нагрузки напряжения и деформации системы в два раза больше, чем при статическом нагружении.

    5.5. ВЕРТИКАЛЬНЫЙ УДАР ВСЛЕДСТВИЕ ВНЕЗАПНОЙ ОСТАНОВКИ ДВИЖЕНИЯ

    Удар вследствие внезапной остановки движения возникает, например, в тросе лифта при внезапной остановке кабины или в балке, на которой закреплён груз Q при жёсткой посадке самолёта, имеющего верти-

    кальную посадочную скорость (рис. 5.5).

    Использовать формулу (5.7) для определения коэффициента динамичности нельзя, так как к моменту удара балка уже воспринимает статическую нагрузку Q . Кинетическая энергия движущейся вертикально кон-

    струкции равна T = QV 2 / 2g , работа груза на дополнительном перемещении (δ д − δ ст ) − А = Q (δ д − δ ст ) (площадь прямоугольника cdef рис. 5.4).

    Работа переходит в дополнительную потенциальную энергию деформации балки:

    U = 1 (R д + R ст )(δ д − δ ст ) ,

    соответствующей площади трапеции bcde на рис. 5.2. Приравнивая T + A = U с учётом уравнений (5.2), (5.3), получим квадратное уравнение:

    V 2 + 2 (k д −1 ) = (k д + 1 )(k д −1 ) ,

    g δ ст

    решая которое, получим коэффициент динамичности при внезапной остановке движения:

    k д = 1 +

    g δ ст

    δ ст δ д

    5.6. ГОРИЗОНТАЛЬНЫЙ УДАР

    Потенциальная энергия, накопленная в системе к моменту возникновения наибольшей деформации δ д , равна кинетической энергии системы

    в момент соприкосновения с ней массы m (рис. 5.6):

    T = mV 2 = U = R д δ д . 2 2

    δд

    С учётом уравнений (5.2) и (5.3), а также, принимая условно R ст = mg , получим

    V 2 = kд 2 mgδ ст ,

    откуда определяем коэффициент динамичности при горизонтальном ударе:

    k д =

    g δ ст

    где δст – перемещение точки системы в месте приложения к ней статической силы mg .

    5.7. СКРУЧИВАЮЩИЙ УДАР

    Напряжения и деформации при ударном кручении определяются так же, как и при ударном растяжении (сжатии) или ударном изгибе. При ударном кручении применимы формулы для определения коэффициента динамичности (5.5), (5.7).

    Например, при ударном скручивании вследствие резкого торможения быстро вращающегося вала, несущего маховик (рис. 5.9), кинетическая энергия T маховика переходит в потенциальную энергию U деформации вала:

    Im ω 2

    скорость

    вращения

    маховика;

    I m = ∫∫ r 2 dm =

    π 2

    4 ρ t ∫ r 3 dr ∫ dϕ = ρ t

    маховика;

    dm = ρ trdrdϕ

    – элементарная

    m = ρ t

    πD 2

    маховика;

    Q = mg –

    вес маховика;

    ρ – плотность материала маховика.

    Потенциальная энергия деформации вала с учётом уравнений (5.2), (5.3):

    U = M кр.дϕ д = k дM крϕ .

    Так как угол закручивания при кручении вала круглого профиля равен

    ϕ = M кр l ,

    GI p

    U = kд 2 M кр 2 l .

    2 GI p

    Приравнивая Т = U , после преобразований, получим формулу для определения коэффициента динамичности при скручивающем ударе :

    GI p Im

    М кр

    GI p Im

    ωD 2

    Gtρ

    ω lD2

    GI p Im

    Gtρ

    GI p

    6. УСТАЛОСТЬ

    При эксплуатации машин и конструкций напряжения в их многочисленных элементах могут многократно изменяться как по величине, так и по направлению.

    Детали, подвергающиеся воздействию переменных напряжений, разрушаются при напряжениях, значительно меньших значений предела прочности, а иногда и предела пропорциональности материала.

    Явление разрушения под действием переменных напряжений называется усталостью материала.

    Если значения переменных напряжений превышают некоторый предел, то в материале происходит процесс постепенного накопления повреждений, который приводит к образованию субмикроскопических трещин. Трещина становится концентратором напряжений, что способствует её дальнейшему росту. Это ослабляет сечение и в некоторый момент времени вызывает внезапное разрушение детали, которое нередко становится причиной аварий.

    Процесс постепенного накопления повреждений под действием переменных напряжений, приводящий к изменению свойств материала, образованию трещин и разрушению детали, называется усталостным раз-

    рушением (усталостью).

    Испытания образцов на усталость проводятся на специальных установках. Наиболее простой является установка, предназначенная для испытаний на переменный изгиб с вращением при симметричном циклическом изменении напряжений.

    6.1. РАСЧЁТ ВАЛА НА УСТАЛОСТНУЮ ПРОЧНОСТЬ

    Проверочный расчёт вала на усталостную прочность учитывает все основные факторы, влияющие на усталостную прочность: характер изменения напряжений, абсолютные размеры вала, обработку поверхностей и прочностные характеристики материалов, из которых изготавливаются валы. Таким образом, перед расчётом вала на усталость необходимо полностью уточнить конструкцию вала.

    Расчёт на выносливость заключается в определении действительных коэффициентов запаса усталостной прочности для выбранных предположительно опасных сечений и является поэтому уточнённо-проверочным.

    Следует помнить, что при ступенчатой форме вала наличие концентраторов напряжений (таких как переход сечения с галтелями, напрессованные детали, шпоночные пазы, шлицы или зубья, отверстия, канавки, резьба и т.д.) опасным необязательно будет то сечение, где суммарный момент имеет наибольшую величину. Поэтому коэффициент запаса уста-

    Понравилась статья? Поделитесь с друзьями!